Estudio preliminar sobre la aplicación de modelos de elementos finitos para describir la articulación del hombro

Contenido principal del artículo

Hans Peter-Köhler
Maren Witt
Jorge Gulín-González

Resumen

La biomecánica computacional utiliza métodos computacionales y simulaciones para estudiar procesos biomecánicos realistas en una escala de tiempo relativamente larga. El hombro es la articulación más compleja del cuerpo humano, es frágil y la más mínima lesión ósea o ligamentosa la hacen inestable. La biomecánica del hombro y el análisis de las lesiones son complejos. Para estudiar estas cuestiones, se pueden utilizar modelos numéricos. En particular, los modelos de mecánica continua basados en el método de elementos finitos (MEF) ofrecen una poderosa herramienta para evaluar las condiciones de carga interna de la estructura musculoesquelética del hombro. Aquí se presentan resultados preliminares del Estado del Arte focalizado en la aplicación del MEF para describir la articulación del hombro. Se explican las características generales, parámetros, ventajas y limitaciones de estos modelos y algunos ejemplos representativos.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Peter-KöhlerH., WittM., & Gulín-GonzálezJ. (2024). Estudio preliminar sobre la aplicación de modelos de elementos finitos para describir la articulación del hombro. Acción, 19(No.1), 4-14. Recuperado a partir de https://accion.uccfd.cu/index.php/accion/article/view/275
Sección
Artículos Originales
Biografía del autor/a

Maren Witt, Leipzig University, Leipzig, Germany

 

 

Citas

Aruin, A. S. (20 septiembre 2023). Biomechanics science. Britannica https://www.britannica.com/science/biomechanics-science.
Astier, V. (2008). Development of a finite element model of the shoulder: Application during a side impact. International Journal of Crashworthiness 13, 301-312. https://doi.org/10.1080/13588260801933741
Bartlett, R. (2007). Introduction to Sports Biomechanics Analyzing Human Movement Patterns. Routledge. ISBN 0-203-46202-5.
Beal, R., Norman, T. J. and Ramchurn, S. D. (2019). Artificial intelligence for team sports: a survey. Knowl. Eng. Rev. 34. https://doi.org/10.1017/S0269888919000225.
Bezodis, N.E., Salo, A.I.T. y Trewartha, G. (2010). Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 9, 258–269.
Braun, S., Kokmeyer, D. y Millett, P. (2009). Shoulder injuries in the throwing athlete. J. Bone Joint Surg. Am., 91, 966-977. https://doi.org/10 .2106/JBJS.H.0134
Büchler, P., Ramaniraka, N., Rakotomanana, L., Iannotti, J. P. y Farron, A. (2002). A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics (Bristol, Avon), 17, 630–639. http://dx.doi.org/10.1016/S0268-0033(02)00106-7.
Chnmait, N. y Westerbeek, H. (2021). Artificial Intelligence and Machine Learning in Sport Research: An Introduction for Non-data Scientists. Front. Sport Act. Living 3. https://doi.org/10.3389/fspor.2021.682287.
Damon, B.M., Ding, Z., Anderson, A.W., Freyer, A.S. y Gore, J.C. (2002). Validation of diffusion tensor MRI- based muscle fiber tracking. Magn Reson Med., 48, 97–104. http://dx.doi.org/10.1002/mrm.10198
Dickerson, C.R., Chaffin, D.B. y Hughes, R.E. (2007). A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Computer Methods in Biomechanics and Biomedical Engineering, 10, 389–400. http://dx.doi. org/10.1080/10255840701592727.
Drury, N., Ellis, B., Weiss, J., McMahon, P. y Debski R. (2010). The impact of glenoidlabrum thickness and modulus on labrum and glenohumeral capsule function. Journal of Biomechanical Engineering-T Asme, 132, 121003. http://dx.doi.org/10.1115/1.4002622.
Favre, P., Snedeker, J. y Gerber, C. (2009). Numerical modelling of the shoulder for clinical applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, 2095–2118. doi: http://10.1098/rsta.2008.0282
Feng, X., Yang, J., and Abdel-Malek, K. (2008). "Survey of Biomechanical Models for the Human Shoulder Complex". SAE Technical Paper,1, 1871. https://doi.org/10.4271/2008-01-1871
Filardi, V. (2020). Stress distribution in the humerus during elevation of the arm and external abduction. J.Orthop.19,218–222.
Huiskes, R. y Hollister, S. J. (1993). From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. Journal of Biomechanical Engineering-T Asme, 115, 520–527. http://dx.doi.org/10.1115/1.2895534
Islán-Marcos, M. (2019). Behavior under load of a human shoulder: Finite element simulation and analysis. J. Med. Syst. 43, 256
Köhler, H.P., Schüler, A., Roemer, K. y Witt, M. (2021). Results of inverse dynamics calculations in Javelin throwing are strongly influenced by individual body segment properties. 39th International Society of Biomechanics in Sport Conference, Canberra, Australia.
Köhler, H.P., Schüler, A., Quaas, F., Fiedler, H., Witt, M. y Roemer, K. (2023). The influence of body segment estimation methods on body segment inertia parameters and joint moments in javelin throwing. Computer Methods in Biomechanics and Biomedical Engineering, 1-9.
Logan, D. L. (2011). A first course in the finite element method. Cengage Learning.
Luo, Z.P., Hsu, H. C., Grabowski, J.J., Morrey, B.F. y An, K. N. (1998). Mechanical environment associated with rotator cuff tears. Journal of Shoulder and Elbow Surgery, 7, 616–620. http://dx.doi.org/10.1016/S1058-2746(98)90010-6
Martins, J. A. C., Pato, M. P. M. y Pires, E. B. (2006). A finite element model of skeletal muscles. Virtual and Physical Prototyping, 1, 159.
Mihcin, S. (2019). Investigation of Wearable Motion Capture System Towards Biomechanical Modelling, 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA) 2019: 1-5, http://dx.doi.org/10.1109/MeMeA.2019.8802208
Nagano, A., Yoshioka, S., Komura, T., Himeno, R. y Fukashiro, S. (2005). A Three-Dimensional Linked Segment Model of the Whole Human Body. International Journal of Sport and Health Science, 3, 311-325.
Pecolt, S., Błażejewski, A., Królikowski, T. y Katafiasz, D. (2022). Multi-segment, spatial biomechanical model of a human body. Procedia Computer Science, 207, 272–281. http://dx.doi.org/10.1016/j.procs.2022.09.060
Quental, C., Folgado, J., Fernandes, P.R. y Monteiro, J. (2014). Subject-specific bone remodelling of the scapula. Computer Methods in Biomechanics and Biomedical Engineering, 17, 1129–1143. http://dx.doi.org/10.1080/10255842.2012.738198
Reddy, J. N. (2006). An Introduction to the Finite Element Method (Third ed.). McGraw-Hill.
Shippen, J. y May, B. (2016). BoB–biomechanics in MATLAB. Proceedings of the 11th International Conference. BIOMDOLE 2016.
Stops, A., Wilcox, R. y Jin, Z. (2012). Computational modelling of the natural hip: a review of finite element and multibody simulations. Computer Methods in Biomechanics and Biomedical Engineering 15, 963–979.
Yang, Z., Xu, G., Yang, J. y Li, Z. (2023). Effect of different loads on the shoulder in abduction postures: a finite element analysis. Sci. Report, 13, 9490. https://doi.org/10.1038/s41598-023-36049-9
Zheng, M., Zou, Z., Da Silva Bartolo, P.J., Peach, C. y Ren, L. (2016). Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int. J. Numer. Meth. Biomed. Engng.